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A spherical drop of one liquid suspended in another is subjected to an instantaneous initial shear. We
simulate the retraction of the drop to its spherical equilibrium and compare the results with recent experiments.
In agreement with the experiments, we observe a two-step relaxation process.
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I. INTRODUCTION

In recent experiments, Assighaou and Benyahia �1� inves-
tigated the retraction of a deformed liquid droplet suspended
in another liquid. They subjected the drop to an initial step
strain and then observed the retraction. If the initial deforma-
tion is large enough, the drop rapidly transitions from the
initial ellipsoidal shape to a new shape which looks more
like a cylinder with spherical caps. The subsequent relax-
ation is characterized by two phases. In the first phase, the
drop maintains the shape of a cylinder with spherical caps; in
the second phase it becomes ellipsoidal.

Each of the two phases has a characteristic relaxation
time. The results in �1� are described in terms of the Hencky
strain and a time scale based on capillary time. Let �d and
�m denote the viscosities of the drop and matrix, K=�d /�m,
r0 the radius of the drop when it is a sphere, and � the
surface tension coefficient. If L is the length of the deformed
drop, the Hencky strain is defined by

� = ln
L

2r0
, �1�

and a capillary time scale is given by

�Ca =
�mr0

�
. �2�

In the second phase of the relaxation, the behavior is deter-
mined by linear stability, and it is found that

� � exp�− t/�2� , �3�

where

�2 =
�Ca

4

�19K + 16��2K + 3�
10�K + 1�

. �4�

In the first phase of the relaxation, on the other hand, the
Hencky strain decreases linearly:

� � − t/�1, �5�

where

�1 = 4.4�2. �6�

This ratio of time scales is found to be independent of the
initial strain and viscosity ratio. The transition between the
two regimes occurs at a Hencky strain of order 0.34; this
value is also independent of the initial strain and viscosity
ratio.

Assighaou and Benyahia �1� attempted to offer a qualita-
tive explanation for the observed behavior. A crucial hypoth-
esis in this explanation is that the difference between the
maximum and minimum of curvature on the surface of the
drop decays exponentially in both phases of relaxation. Since
the curvatures are not measured, they are not able to test this
hypothesis directly.

In this paper, we present direct numerical simulations of
the problem. We do not attempt to simulate the stretching of
the drop at the beginning of the experiment and simply start
the simulation with an initial drop shape arising from instan-
taneous affine deformation of a sphere, together with zero
initial velocities. Theoretically, this assumption is justified
for viscosity ratio 1, if the initial deformation is sufficiently
rapid, and other effects such as inertia or non-Newtonian
effects are neglibible. For viscosity ratios other than 1, the
initial deformation of the drop cannot be expected to be af-
fine, since there is a discontinuity in shear rate at the inter-
face.

For the simulation, we use the in-house VOF-PROST code
�volume-of-fluid, paraboloid representation of the interface
in the surface tension force�, which is detailed in �2�. Briefly,
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FIG. 1. �Color online� The initial shape for numerical simula-
tions is an elongated ellipsoid. Here, S=2, K=1, �Ca=0.56,
�1 /�Ca=9.62, and �2 /�Ca=2.19. �a� Top view shows an ellipse of
width 2r0 in the y direction. �b� Side view.
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this is a finite difference code on a three-dimensional Carte-
sian mesh with a staggered grid. A volume-of-fluid method is
used to track the interface �3� by using a color function to
track the placement of the drop liquid and the matrix liquid.
The full Navier-Stokes equations are solved with the con-
tinuum surface force algorithm for modeling the interfacial
tension force �4�. The interface is reconstructed locally from
a least-squares fit of paraboloids to the values of the color
function in the interface cell and its neighbors, and this al-
lows an accurate computation of curvatures. Figure 1 shows
a sample initial drop shape.

In the simulations which follow, we have kept the viscos-
ity ratio of the fluids equal to 1, and we have chosen the
densities sufficiently small that inertial effects are insignifi-
cant. A typical value of the Ohnesorge number in our com-
putations, defined as � /���r0, where � denotes the density,

is about 3. The parameter S denotes the initial shear of the
drop, i.e., the initial shape is obtained from a sphere via the
deformation �x ,y ,z�� �x+Sz ,y ,z�.

II. DIRECT NUMERICAL SIMULATION RESULTS

Figures 2 and 3 show the evolution of the drop length. In
the first figure, � is plotted against a time normalized with �1.
The dashed lines have slope −1. We see that the lines fit the
first stage of drop evolution reasonably well, in agreement
with the experiments. We note that at the very beginning of
the retraction process, the retraction is faster than the linear
fit; we shall return to this point below.

Figure 3 shows ln��� plotted against a time normalized
with �2. We see that lines with slope −1 fit the later evolution

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t/τ
1

γ

2

1.5

1

0.7

0.5

FIG. 2. Simulation results for �=ln�L /2r0� vs t /�1, K=1, �Ca

=0.35, �1 /�Ca=9.62, and �2 /�Ca=2.19. Shear deformation values
are noted on the plot; S=0.5,0.7,1 ,1.5,2. Lines with slope −1 are
given for reference �- - -�.

0 1 2 3 4 5 6
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

t/τ
2

ln
( γ

)

2
1.5

10.7

0.5

FIG. 3. Simulation results for ln���=ln�ln�L /2r0�� vs t /�2.
K=1, �Ca=0.35, �1 /�Ca=9.62, and �2 /�Ca=2.19.
S=0.5,0.7,1 ,1.5,2. Lines with slope −1 are given for reference
�- - -�.
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FIG. 4. Simulation results for ln�max-min� vs t /�Ca, where max
and min refer to the curvature maximum and minimum. K=1, �Ca

=0.35, �1 /�Ca=9.62, �2 /�Ca=2.19, and S=2. Lines with slopes
−2�Ca /�1 �-.�, �Ca /�2 �–�.
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FIG. 5. �Color online� Numerical results for an initial interval of
time where the slope in Fig. 4 is steep. �a� t /�Ca=0.27, �b� t /�Ca

=0.5, and �c� t /�Ca=0.8. S=2, K=1, �Ca=0.56, �1 /�Ca=9.62, and
�2 /�Ca=2.19. Top view and side view.
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of the drop shape. The transition between the two regimes of
drop evolution is not sharp enough to pinpoint a precise tran-
sition point, but the value 0.34 of the Hencky strain given in
�1� lies within the transition interval.

Figure 4 shows the evolution of the log of the difference
between the maximum and minimum curvature values at
each time t /�Ca. We see an initial steep decrease, followed by
two roughly linear regimes. The slope in the late stage of the
evolution ought to be 1 /�2 as indicated by the dashed line;
we actually see a somewhat flatter slope, probably because
the numerical results become inaccurate when the difference
between maximum and minimum curvature is small. We can
try to predict the slope in the earlier regime based on a priori
assumptions on the drop shape. If we assume the drop has
length L and L is large, then, for an axisymmetric ellipsoid,
the maximum curvature is of order L2, and for a cylinder
with spherical caps it is of order �L. Hence, if L behaves like
exp�−t /�1�, then the curvature difference should behave like

exp�−t / �2�1�� for a cylinder with spherical caps and like
exp�−2t /�1� for an axisymmetric ellipsoid. A line of slope
−2 /�1 has been included in the figure; we see that even that
slope is too flat to fit our results. We conclude that the as-
sumption of fixed drop shape is too simplistic to fit our re-
sults, and the curvature evolution probably reflects changes
in drop shape rather than simply retraction with a given
shape.

Drop shapes are helpful in clarifying the initial stage of
evolution. In Figs. 5 and 6, we show top-view and side-view
pictures of the drop in the initial time interval, where the
curvature difference decreases rapidly. We see that in this
initial interval, the drop evolves from a “flattened pancake”
shape to an axisymmetric shape. The top-view width W de-
creases during the evolution toward axisymmetry and then
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FIG. 6. �Color online� Numerical results at �a� t /�Ca=1.07 and
�b� t /�Ca=6.2. S=2, K=1, �Ca=0.56, �1 /�Ca=9.62, and �2 /�Ca

=2.19. Top view and side view.
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FIG. 7. Numerical results for the ratio of top-view width W to
side-view width B. S=2, K=1, �Ca=0.56, �1 /�Ca=9.62, and
�2 /�Ca=2.19.
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FIG. 8. Comparison of numerical results with experimental data for �=ln�L /2r0����, ln�B /2r0����, and ln�W /2r0���� for the side-view
length L and breadth B, and top-view width W. Numerical results are lines, computed at S=2, K=1, �Ca=0.56, �1 /�Ca=9.62, and �2 /�Ca

=2.19. Experimental data and photographs are at K=0.01, macroscopic strain S�2, for a drop radius r0�200–300 micron, �2 /�Ca=1.21
�1,5�.
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increases again once an axisymmetric shape is reached. We
can get an idea of the transition time from Fig. 7, which
shows the ratio of top-view width W to side-view width B.
We find this time to be not entirely negligible, on the order of
twice the capillary time.

There is excellent agreement with measured results of
side-view length L��� and width B��� and top-view width
W��� given in Fig. 8. The experimental conditions are de-
tailed in �1,5�. Numerical results are lines superposed on the
data. The initial condition for the drop is not quite the same
in the simulation and in the experiments. For the simulation,
we subjected the drop to a shear of magnitude 2 from its
spherical configuration. In the experiments, this shear is ap-
plied to plates at some distance from the drop, and the drop
does not quite deform affinely with the external flow, but
actually reaches a slightly larger initial length. The numbers
in the figure correspond to the experimental photographs and
phases in the drop shapes: “flat” ellipsoid, cylinder, ellipsoid
of evolution, and sphere. The transition between the flat el-

lipsoid and cylinder occurs when the top-view width curves
around the minimum value.

III. CONCLUSIONS

We find a two-step relaxation process, with relaxation
times in agreement with the experimental findings. We also
find that the hypothesis of exponential decay of curvatuves is
appxoximately valid. However, the actual decay rate of cur-
vature is not consistent with the heuristics advanced in �1�.
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